Near-best multivariate approximation by Fourier series, Chebyshev series and Chebyshev interpolation
نویسندگان
چکیده
منابع مشابه
Determination of a jump by Fourier and Fourier-Chebyshev series
By observing the equivalence of assertions on determining the jump of a function by its differentiated or integrated Fourier series, we generalize a previous result of Kvernadze, Hagstrom and Shapiro to the whole class of functions of harmonic bounded variation. This is achieved without the finiteness assumption on the number of discontinuities. Two results on determination of ...
متن کاملMultivariate polynomial interpolation on Lissajous-Chebyshev nodes
In this contribution, we study multivariate polynomial interpolation and quadrature rules on non-tensor product node sets linked to Lissajous curves and Chebyshev varieties. After classifying multivariate Lissajous curves and the interpolation nodes related to these curves, we derive a discrete orthogonality structure on these node sets. Using this discrete orthogonality structure, we can deriv...
متن کاملNotes on Chebyshev Series and Computer Algebra
A typical computer algebra system (CAS) represents formulas by (what amounts to) trees. By approximating a more general function as a univariate polynomial, it can be represented as an array of coefficients. Another common representation is as a set of values of the function at specified points. In either case, one can compute in this realm of “functions” further by combining such arrays. By ta...
متن کاملInterpolation by Weak Chebyshev Spaces
We present two characterizations of Lagrange interpolation sets for weak Chebyshev spaces. The rst of them is valid for an arbitrary weak Chebyshev space U and is based on an analysis of the structure of zero sets of functions in U extending Stockenberg's theorem. The second one holds for all weak Chebyshev spaces that possess a locally linearly independent basis. x1. Introduction Let U denote ...
متن کاملChebyshev Series Expansion of Inverse Polynomials
if the polynomial has no roots in [−1, 1]. If the inverse polynomial is decomposed into partial fractions, the an are linear combinations of simple functions of the polynomial roots. If the first k of the coefficients an are known, the others become linear combinations of these with expansion coefficients derived recursively from the bj ’s. On a closely related theme, finding a polynomial with ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 1980
ISSN: 0021-9045
DOI: 10.1016/0021-9045(80)90069-6